
Using Scripting API
When we talk about scripting on Windows we talk in fact about the COM-
enabled DLLs accessed through TypeLibraries CATIA provides. This is a
short introduction how to use this Scripting API in CATIA-VBA, VB6 and
VB.Net

Using the Scripting API with CATIA-VBA
You need to do nothing as all references are automatically added.
You access the CATIA application object directly with the predefined CATIA
object.

Using the Scripting API with VB6
You need to add the required CATIA references to your project through the
Add references panel

To get the CATIA application object you need to use the GetObject or
CreateObject method, e.g. when CATIA is already running

 Dim CATIA As INFITF.Application

 Set CATIA = GetObject(, "CATIA.Application")

Using the Scripting API with the .Net Languages

Creating the InterOp libraries
In a .Net environment you need to use so-called InterOp libraries to
communicate with CATIAs COM objects. How to create these is explained in
the VB.Net section.

Using the Scripting API with VB.Net
There are 2 methods to do it:
The simple method when using Visual Studio .Net
You need to add the required CATIA references to your project.
Therefor you need to select it under the COM tab in the Add references panel

This will create an Interop DLL in the bin folder of your VB.Net project

and add this reference to your project

Let’s see how this works in a standard VB.Net Windows application. Such an
application automatically imports the following libraries

The following would be possible

Dim CATIA As INFITF.Application

CATIA = Microsoft.VisualBasic.GetObject(, "CATIA.Application")

However, good practice is to have the Strict option set to on which would lead
to a compiler error with the above code as the GetObject method returns a
generic object not an Application object.
So it needs to be changed to the following

Dim CATIA As INFITF.Application

CATIA = CType(Microsoft.VisualBasic.GetObject(, "CATIA.Application"), _
 INFITF.Application)

The second method is to generate the interop libraries manually using the
tlbimp utility of the .Net framework. This can be found in the installation path
of the framework, e.g.

C:\Program Files\Microsoft.NET\SDK\v1.1\Bin\tlbimp.exe

To create a interop library for the basic API (the environment variables are
used to make the command line more simple (which is represented as 2 lines
in the following)

set TLBIMP="C:\Program Files\Microsoft.NET\SDK\v1.1\Bin\tlbimp.exe"
set CATIA=C:\Program Files\Dassault Systemes\B15\intel_a\code\bin
set TYPELIB=InfTypeLib
set OUT=C:\Active\Applications\VSNet\CATIAR15DLL

%TLBIMP% "%CATIA%\%TYPELIB%.tlb" /out:%OUT%\%TYPELIB%.
15.0.dll /namespace:CATIA.%TYPELIB% /asmversion:5.15.0.0

This creates the interop library InfTypeLib.15.0.dll in the directory %OUT% In
addition a namespace is defined for this library as well as a version.
You have to add this as a reference to your project using the Add references
panels via Browse and select the newly created dll

which adds this library to your project

which then can be used with the following code (you have to use the
Namespace you have defined with tlbimp utility).

Dim CATIA As CATIA.InfTypeLib.Application

CATIA = CType(Microsoft.VisualBasic.GetObject(, "CATIA.Application"), _
 CATIA.InfTypeLib.Application)

Optionally without using the Microsoft.VisualBasic compatibility library it is
possible to use the InterOpServices

CATIA = CType(System.Runtime.InteropServices.Marshal.GetActiveObject(_
 "CATIA.Application"), _
 CATIA.InfTypeLib.Application)

Using tlbimp you have to take care that some typelibs are dependant on
others, e.g. KweTypeLib depends on InfTypeLib.
In this case tlbimp would create an interop library automatically (like in the
Visual Studio environment). To avoid this you first have to create the base
interops and the reference them in the tlbimp, e.g. for KweTypeLib

set TLBIMP="C:\Program Files\Microsoft.NET\SDK\v1.1\Bin\tlbimp.exe"
set CATIA=C:\Program Files\Dassault Systemes\B15\intel_a\code\bin
set TYPELIB=InfTypeLib
set OUT=C:\Active\Applications\VSNet\CATIAR15DLL

%TLBIMP% "%CATIA%\%TYPELIB%.tlb" /out:%OUT%\%TYPELIB%.
15.0.dll /namespace:CATIA.%TYPELIB% /asmversion:5.15.0.0

set TYPELIB=KweTypeLib

%TLBIMP% "%CATIA%\%TYPELIB%.tlb" /out:%OUT%\%TYPELIB%.
15.0.dll /namespace:CATIA.%TYPELIB% /asmversion:5.15.0.0 /reference:
%OUT%\InfTypelib.15.0.dll

creating these dlls

Using the Scripting API with C#
Of course the above said is valid for C# as well.
However it is necessary if using the GetObject method from the VisualBasic
library to load the Microsoft VisualBasic .Net Runtime as a reference to your
project.

Then you can get CATIAs Application object as follows

CATIA.InfTypeLib.Application CATIA;
CATIA=(CATIA.InfTypeLib.Application)
Microsoft.VisualBasic.Interaction.GetObject(null,"CATIA.Application");

Or using the InterOpServices

CATIA=(CATIA.InfTypeLib.Application)
System.Runtime.InteropServices.Marshal.GetActiveObject("CATIA.Application");

Using the Scripting API with C++ in .Net
Of course the above said is valid for C++ in a .Net application as well.
So you have to include your reference for the interop CATIA dll in your C++
project.

To get the CATIA Application object this code can be used
To make the code shorter

using namespace System::Runtime::InteropServices;

Then in your code (just one checking at the end)

System::Object* CATIAObj;
CATIAObj = Marshal::GetActiveObject("CATIA.Application");
CATIA::InfTypeLib::Application* CATIA;
CATIA = dynamic_cast<CATIA::InfTypeLib::Application*>(CATIAObj);
if (CATIA == 0)

 System::Diagnostics::Debug::WriteLine("CATIA not retrieved");

	Using Scripting API
	Using the Scripting API with CATIA-VBA
	Using the Scripting API with VB6
	Using the Scripting API with the .Net Languages
	Creating the InterOp libraries
	Using the Scripting API with VB.Net
	Using the Scripting API with C#
	Using the Scripting API with C++ in .Net

